<<
>>

7.6.1 Задачи

^ 400. Покажите, что если абсолютная мера Эрроу- Пратта неприятия риска убывает, то и''' ^ 0. Покажите, что обратное неверно.

^ 401. Приведите примеры элементарной функции полезности с возрастающей, убывающей и постоянной абсолютной и относительной мерой Эрроу- Пратта.

^ 402.

Покажите, что при увеличении объема инвестиций доля инвестиций в рискованный актив (в сумме инвестиций в оптимальный портфель) постоянна (возрастает, убывает), если относительная мера Эрроу- Пратта убывает (возрастает, постоянна).

^ 403. Пусть в ситуации с двумя активами, рассмотренной выше, a(r0) - оптимальная доля вложений в рискованный актив как функция доходности безрискового актива. Покажите, что если для абсолютной меры Эрроу- Пратта выполнено p'(-) > 0 (она является возрастающей функцией), и решение внутреннее (0 < a(r0) < 1), то da(r0)/dr0 > 0, т. е. уменьшение доходности безрискового актива приводит к увеличению доли вложений в рискованный актив. Указание: Покажите, продифференцировав условие первого порядка, что

da(r0) Е (и'(ж)) - и(1 - а(г0))Е(и''(ж)(Г - r0)) dr0 иЕ(и''(ж)(Г - r0)2)

Отсюда следует требуемый результат, поскольку Е(и''(ж)(г - Г0)) ^ 0 (вследствие того, что

p'(-) > 0).

^ 404. Предположим, что (в мире с двумя состояниями) имеется один рискованный (с нормой доходности r ) и один не приносящий дохода безрисковый актив. Охарактеризуйте в терминах относительной и абсолютной меры неприятия риска Эрроу- Пратта (эластичности по богатству спроса на рисковый актив) представленные на рисунке возможные структуры оптимальных портфелей при разных уровнях богатства. Линия PP' представляет совокупность фактических портфелей (при разных уровнях инвестиций в портфель), SS' (TT') - совокупность портфелей при условии, что портфели содержат лишь безрисковые (рискованные) активы. Линии ST (S'T') представляют совокупность допустимых портфелей при данном уровне инвестиций.

(а)

(б)

(в)

(г)

^ 405. Докажите, что если у двух индивидуумов меры неприятия риска pI(-) и p2(') таковы, что при всех ж выполнено pI (ж) ^ p2^), то для любого исходного уровня богатства и выполнено ?2(и) С EI(u). (Заметим, что обратное утверждение фактически доказано в тексте параграфа.)

^ 406. Пусть ж(?) - семейство случайных величин, принимающих значение и + t и и - t c равными вероятностями, и пусть A(t) - вознаграждение за риск для ж^) для потребителя

с элементарной функцией полезности u(-), такой что и'(ж) > 0 и и"(ж) ^ 0. Покажите, что Д(0) = 0, Д'(0) = 0 и Д"(0) = -u"(w)/uV) = r(u).

^ 407. Пусть X(t) - семейство случайных величин, принимающих значение и + t и и - t c равными вероятностями, и пусть n(t) - вероятностное вознаграждение за риск для этих случайных величин, которое определяется по формуле

u(u) = + n(t)) u(u +1) + Q - n(t)) u(u - t).

Покажите, что если элементарная функция полезности u(-) строго вогнута, то n(t) > 0 при t > 0 и п(0) = 0.

Покажите, что 4п'(0) = -""(и)/"'(и) = r(u).

^ 408. Рассмотрите лотереи вида и + te, где E е = 0. Покажите, что в первом приближении (при малых t) премия за риск равна

p(u) Var(e)t2/2, где р(-) - абсолютная мера Эрроу- Пратта.

7.7 Приложение: модель Марковица и CAPM

Рассмотрим интересный частный случай модели инвестора, предположив, что элементарная функция полезности и(-) имеет вид параболы:

и(ж) = а0 + а1ж - а2ж2.

(Можно интерпретировать это как квадратичную аппроксимацию первоначальной элементарной функции полезности получаемую разложением в ряд Тейлора вплоть до членов второго порядка в некоторой точке:

и(-) = а0 + а1ж + а2ж2 + ...)

Предполагается, что здесь aI,a2 > 0. Условие й2 > 0 гарантирует, что инвестор является рискофобом. Условие aI > 0 гарантирует, что при достаточно малых ж элементарная функция полезности имеет положительную производную. Очевидно, что квадратичная функция может быть адекватной аппроксимацией не при всех ж, поскольку при ж = aI/(2a2) она достигает максимума, а далее убывает (т.

е. по сути дела она подразумевает насыщаемость предпочтений инвестора) .

Рис. 7.9. ???

При такой элементарной функции полезности ожидаемая полезность случайного дохода ж равна

U = Е и(ж) = a0 + ai Е ж - a2 Е(ж2).

Введем обозначения X = EX (ожидаемый доход) и оХ = VarX (дисперсия дохода). По определению дисперсии

E(X2) = (E X)2 + Var X = X2 + о2. В этих обозначениях ожидаемая полезность примет вид

U = аО + aIX - a2(X2 + оХ).

Таким образом, при квадратичной элементарной функции полезности целевая функция инвестора зависит от двух характеристик распределения его дохода от портфеля: от математического ожидания дохода (среднего дохода) и дисперсии дохода (которую можно считать мерой рискованности). Эта парадигма "среднее-дисперсия" Марковица не только упрощает анализ инвестиционного поведения, но и позволяет давать наглядные геометрические интерпретации различных этапов такого анализа, поскольку каждый портфель в этой ситуации характеризуется всего двумя параметрами.

Удобно, как и выше, перейти от дохода к валовой доходности портфеля, которую обозначим через fp:

fp = X/и.

Обозначим через fp ожидаемую доходность портфеля, E fp, а через op - дисперсию доходности портфеля, Var fp. Поскольку X = ufp, то, вынося константу и за операторы мат. ожидания и дисперсии, получим

X = E X = E(ufp) = и E fp = ufp

и

оХ = Var X = Var^fp) = и2 Var fp = и2Ор. Подставим эти выражения в функцию полезности:

U = a0 + a^fp - а2и2(^ + оp)

или, при введении обозначений bO = аО, bI = а1и, b2 = а2и2,

U = bO + bIfp - b2 (fp + op),

Мы можем нормировать эту функцию, применив к ней соответствующее линейное возрастающее преобразование. Окончательно получаем следующую функцию полезности:

U = fp - Y (fp + op).

Функция зависит от ожидаемой доходности портфеля и дисперсии доходности портфеля. Коэффициент Y отражает степень неприятия риска.

Доходность портфеля очевидным образом связана с доходностями активов:

fp = ? afc ffc

fceK

или

fp = a T r,

где a = {aifc- вектор долей активов (структура портфеля), r - вектор, составленный из доходностей активов. Таким образом, доходность портфеля - это взвешенное среднее доход- ностей активов, где в качестве весов выступают доли активов в портфеле.

Обозначим через f вектор, составленный из ожидаемых доходностей активов f^ = E f., а через V - ковариационную матрицу доходностей активов. В этих обозначениях для ожидаемой доходности портфеля выполнено соотношение

fp = Efp = E(aTr) = aT E(r) = aTr = ? akfk,

fceK

(ожидаемая доходность портфеля - это взвешенное среднее ожидаемых доходностей активов), а для дисперсии доходности портфеля выполнено

= Var(fp) = Var(aT Г) = E[(aTr - E(aTr))2 ] = = E[(aTr - aTr)2] = E[(aT(r - r))2] = E[aT(r - f)(r - r)Ta] = = aT E[(r - f)(r - r)T]a = aTVa = ? ? afclafc2cfclfc2.

fcl€Kfc2€K

Типичным элементом ковариационной матрицы V является ковариация между доходно- стями пары активов:

Cfcifc2 = Cov(ffci , f&2 ) = E[(ffci - ffci )(ffc2 - ffc2 )].

Ковариационная матрица симметрична и по диагонали ее стоят дисперсии доходностей отдельных активов oJ2 = Cfcfc = Var .

[Напомним, что в дискретном случае величины f, о2 и вычисляются по формулам:

ffc = ? = ? Ps(rfcs - ffc)2, Cfcifc2 = ? ps(rfcis - ffci)(rfc2S - ffc2)).]

ses ses ses

Дисперсию доходности портфеля можно выразить также через корреляции доходностей активов:

fcieK fc2eK

где Ofc - корень из дисперсии (среднеквадратическое отклонение) доходности k-го актива, Pfcifc2 - коэффициент корреляции доходностей активов kI и k2, определяемый как

Cfci fc2

Pfcifc2 = .

°fci °fc2

В конечном итоге задача инвестора в модели Марковица приобретает следующий вид:

U = aTr - Y ^(aTr)2 + aTVaj ^ max.

? afc < 1,

fceK

afc ^ 0, Vk e K, k = 0.

В зависимости от рассматриваемой модели безрисковый актив k = 0 может присутствовать, либо нет в формулировке этой задачи инвестора. Эта задача представляет собой задачу квадратичного программирования, поскольку в нее входят только многочлены второго порядка от долей .

В такой упрощенной модели выбора каждый актив характеризуется для инвестора всего двумя параметрами, поэтому задачу инвестирования можно и удобно рассматривать на диаграмме с осями о, f (диаграмма риск-доходность). На этой диаграмме каждый актив или портфель активов P можно изобразить точкой (ap, fp).

Кривые безразличия (линии уровня функции полезности)

fP - Y (fp + а2) = const

представляют собой окружности с центром в точке (ар, fp) = ^0, .

Мы будем в дальнейшем предполагать, что точка насыщения с доходностью 1/2Y находится выше доходностей всех доступных инвестору активов.

Для этой модели можно доказать ряд утверждений о характеристиках портфелей, характеризующих структуры допустимых и оптимальных портфелей в разных ситуациях (с точки зрения доходностей доступных инвестору активов).

Рассмотрим случай, когда портфель составлен из безрискового актива (k = 0) и одного рискованного актива (первого). Дисперсия доходности такого портфеля равна

а^ = Var(a0r0 + aif I) = Var(aif I) = aI Var(f) = а^а^

Среднеквадратическое отклонение равно

ар = aI а!,

т. е. при комбинировании безрискового и рискованного активов среднеквадратичное отклонение портфеля пропорционально среднеквадратичному отклонению рискованного актива, причем коэффициент пропорциональности равен доле вложений в рискованный актив.

Доходность же портфеля, очевидно, равна

rp = а0Г0 + aIfI = (1 - aI)r0 + aIfI = Г0 + aI(fI - Г0).

Таким образом, портфели (ар, fр), соответствующие различным выпуклым комбинациям этих активов лежат на отрезке с концами в точках (0, Г0) и (а^ fI). Это множество допустимых портфелей для случая, когда кредит невозможен (т. е. инвестор не может выбрать а0 > 0). Если кредит доступен, то возможные комбинации лежат на луче, выходящем из (0, Г0) и проходящем через (а^п). Часть луча за точкой (а^п) соответствует кредиту (а0 > 0). Этот луч - аналог бюджетной прямой для задачи инвестора.

Рис. 7.10. Оптимальный портфель в случае двух активов

Оптимальному портфелю на графике соответствует точка, в которой кривая безразличия касается луча. Доли активов в оптимальном портфеле определяются отношением инвестора к риску (параметром Y). Для того, чтобы оптимальный портфель был внутренним (в смысле ai > 0), необходимо и достаточно, чтобы fi > Г0 .В случае же fi ^ Г0 наклон луча будет отрицательный и оптимум будет достигаться при a1 = 0 (рискованный актив не войдет в портфель).

Перейдем теперь к рассмотрению портфелей, содержащих несколько рискованных активов. Мы выясним при различных частных предположениях о коррелированности доходностей активов, какова будет структура множества возможных портфелей и каким будет оптимальный портфель.

Сначала рассмотрим случай, когда доходности всех рискованных активов жестко положительно коррелированны, то есть когда коэффициент корреляции между любой парой активов равен единице:

pfclfc2 = 1 (Vki,k2 = 0) .

При этом

2
ар = ?? aki afc2 ак1 а&2 = ? aki ак1 ? afc2 ак2 = ( ? akак fcl

fc2

ki fc2 откуда

ар = ? afc а^.

(В матричном виде аг аL

а1а1 V =

= аа уаа ooo агагу

где а = (а^}k - вектор корней из дисперсий активов. В этих обозначениях

а^ = a т Va = a т аа т а = (а т а)2.) Для ожидаемой доходности вне зависимости от коррелированности выполняется

fp = Е afc ffc. k

Отсюда следует, что множество точек (ар, fр) при неотрицательных долях ak есть выпуклая комбинация точек (ак, fk), соответствующих рассматриваемым активам:

(ар ^р) = ? ak (ак, fк) k

(риски складываются с весами a, как и доходности).

Другими словами, на диаграмме риск-доходность множество возможных рискованных портфелей представляет собой выпуклый многоугольник с вершинами в точках ^k, fk), соответствующих отдельным активам.

Гр

ар

Рис. 7.11. Возможные рискованные портфели в случае жестко положительно коррелированных активов

Проанализируем структуру портфелей, содержащих дополнительно безрисковый актив.

Выше мы уже рассмотрели, как комбинировать рискованный актив с безрисковым. Нетрудно понять, что по аналогичным формулам вычисляются характеристики портфеля, полученного при комбинировании рискованного портфеля с безрисковым активом. Любой такой портфель на диаграмме риск-доходность будет представлять собой точку отрезка (луча) соединяющего безрисковый актив с данным рискованным портфелем. Действительно, пусть доли активов в исходном рискованном портфеле равны v*, тогда этот портфель имеет следующие характеристики:

fR = ? vfc ffc, fc=o

°Я = ? ? Vfci Vfc2 С*1*2 . fci=0fc2=0

Назовем комбинированным портфелем, состоящим из безрискового актива и исходного портфеля, с долями ао и 1 - ао соответственно, такой портфель, в котором доли вложений в рискованные активы равны afc = v* (1 - ао), а доля вложений в безрисковый актив равна ао. Такой портфель имеет следующие характеристики:

fp = Y1 а* ffc,

fceK

°р = ? ? а*1 ак2 cfcifc2. fcieK fc2eK

Покажем, что выполнены следующие соотношения:

fp = аого + (1 - ао^я,

ctp = (1 - ао)оя, fp = аого + (1 - ао^я,

то есть при таком комбинировании с портфелями можно обращаться так же, как с активами. (Этот результат можно обобщить на случай комбинирования любых портфелей.) Действительно,

fp = ? а^ = аого + ? vfc(1 - ао)^ = fceK fc/о

= аого + (1 - ао) ? vfcffc = аого + (1 - ао^я. fceK

Для дисперсии комбинированного портфеля имеем

°р = ? ? ак2 cfcifc2 = fcieK fc2eK

= аосоо + ? а** аос^о + ? аоа^^ + ? ?

*1=О *2=о *1=О *2=о

Учитывая, что соо = с^о = со*2 = 0, и а* = v*(1 - ао) получаем

CTp = (1 - ао)2 ? ? v*iv*2c*i*2 = (1 - ао)2оЯ

*1=о *2=о

или

CTp = (1 - ао)оя.

Вернемся к анализу портфеля, в котором все рискованные активы жестко положительно корре- лированы. Учитывая полученный только что результат, охарактеризуем все комбинированные

портфели в этом случае. Каждый из них является точкой на луче, выходящем из точки (0, Го) и проходящем через одну из точек многогранника рискованных активов. Таким образом, комбинированные портфели в данном случае представляют собой выпуклый конус, составленный из таких лучей. Оптимальный портфель должен лежать на верхней границе этого конуса, в точке, где ее касается кривая безразличия инвестора (см. Рис. 7.12).

Рис. 7.12. Оптимальный портфель в случае жестко положительно коррелированных активов

В оптимальный портфель в невырожденном случае войдет только один рискованный актив, имеющий наилучшие характеристики.

Здесь рискованная часть портфеля определяется из задачи

ffc - ГО

> max .

CTfc fc=1,...,Z

Выбирается актив, для которого луч будет иметь наибольший наклон. Только он и может войти в портфель с положительным весом.

В вырожденном случае (см. Рис. 7.13) несколько активов характеризуются максимальным наклоном и все они могут войти в оптимальный портфель. В оптимуме относительные доли вложений в такие активы не определены однозначно.

Рис. 7.13. Жестко положительно коррелированные активы - вырожденный случай

Мы рассматривали только поведение инвестора, т. е. спрос на активы, но можно рассматривать и предложение активов. Если те, кто предлагает активы, могут менять доходность, но не коэффициенты корреляции, то естественно ожидать, что в равновесии на рынке активов все предлагаемые активы лежат на оптимальном луче. Таким образом, для строго положительно коррелированных активов "вырожденный" случай в определенном смысле довольно естественен.

Второй случай коррелированности - жесткая отрицательная корреляция. Имеет смысл рассматривать только пару таких активов (для более чем двух активов все коэффициенты корреляции не могут равняться -1). Таким образом, пусть есть два актива, 1 и 2, такие что

Pi2 = -1. Применяя общую формулу для расчета дисперсии, получим

4 = (аьа2)( о2 -Т2) М = p v ' у о^ о| у уа2J

= а2^2 - 2ai а^^ + а^о! = (а^ - а2о2)2, откуда среднеквадратическое отклонение равно

CTp = Ца^ I - а2 о21|. Ожидаемая доходность портфеля равна

fp = aLf I + a2f2.

Несложно понять, что допустимые комбинации таких двух активов составляют ломаную. Точка излома соответствует портфелю с нулевым риском (ор = 0). Это означает, что из двух жестко отрицательно коррелированных активов можно составить безрисковый портфель. (02,f2)

(ai,f 1)

безрисковый портфель

г Р Л

ор

Рис. 7.14. Возможные рискованные портфели в случае жестко отрицательно коррелированных активов

Чтобы получить такую ломаную на графике, нужно отразить одну из точек относительно вертикальной оси и соединить отрезком с другой точкой.

Рис. 7.15. Построение ломаной возможных рискованных портфелей в случае жестко отрицательно коррелированных активов

Безрисковый портфель получается при следующей структуре портфеля:

о2 о

ai = , а2 =

о + СТ2 о i + СТ2

Его доходность, которую мы обозначим гоо, равна

о^2 + О2f i

гоо =

ОL + о 2 Поскольку из двух таких активов можно составить безрисковый портфель, то рассматривать, как эти активы будут сочетаться с безрисковым активом, не имеет особого смысла. Можно сказать только, что при Гоо > Го и возможности кредита по ставке Го получается парадоксальный результат - можно брать в кредит по ставке Го и инвестировать без риска с доходностью Гоо . При этом можно получить сколь угодно большую доходность портфеля. (Формально в модели решение существует, так как целевая функция насыщаема.) Ясно, что этого не может происходить в рыночном равновесии. Следует учесть предложение активов. Естественно предположить, что в равновесии должно быть Гоо ^ Го (отсутствие "рога изобилия").

Третий случай, который мы рассмотрим - некоррелированные активы. Тогда

V = diag(CT2,...,^2). op = aTVa = ? akо^. ak

ор

IE Ожидаемая доходность портфеля, как всегда, равна

fp = E ak fk.

k

Из двух некоррелированных активов комбинируется дуга, изогнутая влево (см. Рис. 7.16)

fp = a1f1 + a2f2 = a1 f1 + (1 - a1)f2.

oP = \J apop + apop = \J afop + (1 - a1)2op.

FPI\
(oi,fi) ' (o2,f2)

Op

Рис. 7.16. Возможные рискованные портфели в случае двух некоррелированных активов

В отличие от случая жесткой положительной коррелированности, риски при некоррелированности не складываются, поэтому риск при комбинировании активов будет снижен. Тогда все активы с доходностью выше гарантированной должны войти в оптимальный портфель (эффект диверсификации). Другими словами, для случая некоррелированных доходностей в модели Марковица выполняется аналог теоремы о диверсификации:

: Если доходности всех рискованных активов в модели Марковица некоррелированны, то рискованный актив войдет в оптимальный портфель (ak > 0), если, ?? и только если, его ожидаемая доходность выше гарантированной (fk > Го).

Доказательство этого утверждения будет приведено ниже.

Рис. 7.17. Оптимальные портфели в случае двух некоррелированных активов.

На Рис. 7.17а оба рискованных актива входят в оптимальный портфель, так как их ожидаемая доходность больше доходности безрискового актива. На Рис. 7.17б только один рискованный актив (1-й) входит в оптимальный портфель.

При произвольном коэффициенте корреляции комбинации доходности и риска, достижимые комбинированием двух активов, окажутся на графике некоторой кривой соединяющей эти точки и выгибающейся, при неполной коррелированности, влево. На Рис. 7.18 показаны портфели, которые можно составить из двух активов при разных коэффициентах корреляции. Чем меньше коэффициент корреляции, тем сильнее влево выгибается кривая возможных портфелей.

Рис. 7.18. Возможные портфели из двух рискованных активов при разных коэффициентах корреляции

В общем случае допустимое множество R всех доступных инвестору портфелей, состоящих из рискованных активов, на диаграмме риск-доходность будет изображаться некоторой связной фигурой, граница которой оказывается кривой, выпуклой влево (см. напр. Рис. 7.19) . Очевидно, что множество R лежит в пределах, задаваемых наибольшей и наименьшей ожидаемой доходностью доступных активов. Т. е. для любого рискованного портфеля (ом, Гм) G R выполнено

min ffc ^ Гм ^ max ffc.

Если бы инвестор выбирал портфель из множества R, то он не стал бы выбирать такой портфель (ом, fм), для которого существует другой допустимый портфель (оМ, fM) G R с лучшими характеристиками, т. е. такой что

ом ^ ом и Гм ^ Гм,

Г p м

К

эффективная ь

граница

op

Рис. 7.19. Множество возможных рискованных портфелей для нескольких активов

причем одно из неравенств строгое. Выбор инвестора всегда лежал бы на эффективной границе, состоящей из портфелей, для которых при заданной величине риска доходность максимальна (см. Рис. 7.19).

Комбинируя рискованные портфели с безрисковым активом получим множество всех возможных портфелей, которое на диаграмме будет выглядеть как конус с вершиной в точке (0, Го) (см. Рис. 7.20). Этот конус состоит из всех таких лучей, что они выходят из точки (0, Го) и проходят через одну из точек (ом, fM) G R.

Рис. 7.20. Множество возможных портфелей для нескольких активов

Комбинируя наилучшую (по наклону луча) точку из R с безрисковым активом, как и ранее получаем наилучший по соотношению риска и доходности. Оптимальный портфель определяется наиболее крутым лучом (см. Рис. 7.20), т. е.

Г M - Го

> max .

ом (о-M ,ГМ

Полезность инвестора от оптимального портфеля равна

U = fp - Y (fp + op),

где величины fp и op можно выразить через доли всех активов, кроме безрискового, (ak, k = 1,..., l) следующим образом:

1

fp = Го + ? ak (fk - Го), k=1

l I

= ? ? aki ak2 ckik2 . ki = 1 k2 = 1

2
Заметим, что

dfp до:

ffc - Г0 и = ^ CJfc

dafc dafc j=1

Будем рассматривать полезность U как функцию долей всех рискованных активов. Оптимальный портфель характеризуется долями, максимизирующими эту функцию (при ограничениях на их неотрицательность).

Найдем производную U по afc:

dU dfp / dfp дор\

= -p - Y 2fP-p + p =

dafc dafc ^ dafc dafc у

= ffc - ro - Y ^2fp(ffc - ro)+2 ? ajCjfc j =

i

= (1 - 2Yfp)(ffc - ro) - 2Y ? ajCjfc.

j=i

Для оптимального портфеля dU/dafc ^ 0, причем для активов, входящих в портфель (afc > 0), по условию дополняющей нежесткости, dU/dafc = 0. Из условий дополняющей нежесткости

^ dU

?Л dak = 0,

т. е.

(1 - 2Yfp)(fp - ro) - 2Yop = 0, откуда, исключая обсуждавшийся выше вырожденный случай, когда ор = 0, получим

1 - 2Yfp = -^

fp - ro

Отсюда

dU I 2 ffc - ro v1^

-- = 2Y ор > aj Cjfc

dafc ^ p fp - ro j= j j

Взвешенная сумма ковариаций в этой формуле равна:

i i i ? ajj = ? aj Cov(fj, f) = Cov(? ajfj, f)

j=1 j=1 j=1

= Cov(fp - aoro, ffc) = Cov(fp, ffc). Обозначим эту величину Cpfc. Тогда

dU / р ffc - ro

-- = 2Y оР- cpfc

dafc V fp - ro

Следовательно, условия первого порядка dU/dafc ^ 0, характеризующие оптимальный портфель, можно записать следующим образом:

причем если k-й актив входит в оптимальный портфель (ak > 0), то здесь достигается равенство. Т. е. для активов, входящих в портфель, выполнено следующее условие оптимальности:

fk - ГО = (fP - ГО).

Пусть v = (v1,...,v) - структура рискованной части портфеля. Величина Vk представляет собой долю вложений в k-й актив в общих вложениях в рискованные активы. Другими словами, если (a1,..., aj) - оптимальный для инвестора портфель, то

ak

Vk = ^ , k = 0.

2^-=О aj

В знаменателе стоит ^^=О aj = 1 - aО - доля рискованной части портфеля. Можно записать это соотношение и в другом виде:

ak = Vk (1 - aО),k = 0.

Рассмотрим портфель, составленный только из рискованных активов, с долями Vk. Его доходность обозначим через гм. Она связана с доходностью полного оптимального портфеля как

fp = aО ГО + (1 - aО)fм.

Следовательно,

fp = aо Го + (1 - aо)fм,

op = (1 - aо) oM,

cpk = Cov(fp, fk) = Cov((1 - aо)Гм, fk) =

= (1 - aо) Cov(fм, fk) = (1 - aо)cмk.

Используя эти обозначения, условия первого порядка для актива, входящего в оптимальный портфель, можно записать как

fk - Го = ek (fм - Го),

где

= Cov(fм ,fk) = -м* Уэг(Гм) .

Это основная формула модели CAPM . В соответствии с этим соотношением ожидаемую доходность актива, вошедшего в портфель, можно разбить на две части:

доходность безрискового актива, Го (это компенсация за отложенное потребление);

компенсация за подверженность риску, fk - Го (премия за риск).

Коэффициент ^k - это ковариация между доходностью k -го актива и доходностью рискованной части оптимального портфеля, нормированная на дисперсию доходности рискованной части оптимального портфеля. Такой нормированный показатель называется величиной бета этого актива.

Для активов, не входящих в оптимальный портфель, выполнено

fk - Го ^ ek^м - Го).

В частном случае, когда доходности рискованных активов некоррелированны?? между собой, очевидно, что беты всех активов, не вошедших в оптимальный портфель, будут равны нулю. Следовательно, для актива, не вошедшего в портфель, выполнено

fk - Го ^ ek^м - Го) = 0.

С другой стороны, если актив вошел в портфель, то его бета должна быть положительна. Следовательно, для такого актива

ffc - rO = А(Гм - rO) > 0

(где мы предполагаем, что Гм > rO). Тем самым, мы доказали "теорему о диверсификации", сформулированную выше.

Интерпретируем теперь полученные результаты в контексте ситуации, когда всем инвесторам на рынке доступны одни и те же активы.

Множество R допустимых комбинаций рискованных активов у всех будет одним и тем

же.

Поскольку оптимальный портфель у каждого инвестора лежит на луче с наибольшим наклоном, выходящим из точки (0, rO) и проходящем через точку множества R, то у всех инвесторов рискованная часть портфеля будет иметь одно и то же соотношение (Гм - ^)/ом. Рискованный портфель, характеризующийся этим оптимальным соотношением называется рыночным портфелем (см. Рис. 7.21). Это точка "касания" эффективного луча и множества R. Ясно, что всякая точка ^p, fp), лежащая на эффективном луче удовлетворяет уравнению

fp = rO - - (Гм - rO) ом

или

f p - rO = Гм - rO Оp ом

где (ом, Гм) - характеристики рыночного портфеля.

Рис. 7.21. Оптимальные портфели разных инвесторов

: Теорема о разделении (Separation Theorem):

Для всякого инвестора (независимо от Y ) рискованная часть оптимального портфеля является рыночным портфелем.

Соответственно, процесс поиска оптимального портфеля можно разделить на два этапа: сначала определяется оптимальный рискованный портфель (ом, fм), а затем в зависимости от склонности к риску выбирается его оптимальное сочетание с безрисковым активом. При отождествлении оптимального рискованного портфеля с рыночным задачу первого "решает" рынок и инвестору достаточно выбрать соотношение между безрисковым активом и этим портфелем. Тем самым, вместо того, чтобы рассматривать все активы, инвестору достаточно выбрать соотношение между безрисковым активом и рыночным портфелем. (Выше мы уже анализировали подобную задачу.)

Это утверждение называют также "теоремой о взаимных фондах" ("Mutual Fund Theo" rem"). Название отражает тот факт, что в "мире Марковица" инвесторы могут доверить составление оптимального портфеля рискованных активов инвестиционным организациям ("взаимным фондам"), а сами должны будут лишь комбинировать этот готовый портфель с безрисковым активом в соответствии со своими предпочтениями.

Как мы видели, точка касания (ом, Гм), вообще говоря, может быть не единственной. Кроме того, в общем случае данной паре (ом, Гм) не всегда соответствует единственная структура активов, поэтому рыночный портфель может быть не единственным.

Если мы имеем дело с невырожденным случаем (например, когда матрица корреляций доходностей рискованных активов невырождена), то рыночный портфель (vi,...,vi) единственный и вектор (vi,...,vi) для любого инвестора характеризует структуру рискованной части портфеля. Таким образом, этот же вектор характеризует структуру продаж активов на рынке в целом (отсюда и термин "рыночный портфель").

Показатель бета отдельного актива, вк = Смк/о^, представляет собой характеристику актива, общую для всех инвесторов. Бета актива измеряет степень взаимосвязанности доходности актива и доходности рыночного портфеля. Соотношения

ffc - ro = вк(Гм - ro).

показывают, что премия за риск, ffc - ro, пропорциональна коэффициенту вк. Коэффициент пропорциональности здесь - премия за риск для рыночного портфеля, Гм - ro.

Бета актива, фактически, представляет собой наклон теоретической линии регрессии доходности актива по доходности рыночного портфеля (отсюда и название). Действительно, можем ввести обозначение f = ffc - ro - вк^м - ro) для ошибки регрессии. Тогда уравнение регрессии будет иметь вид

ffc = (1 - вк)ro + вкfм + f,

где ошибка имеет нулевое математическое ожидание E f = ffc - ro - вк(Гм - ro) =0 и некор- релирована с регрессором:

Cov(f, fм) = E(ffм) = E(ffcfм) - ^Гм - вк(E(f|f) - fofм) =

= E(ffc fм) - ffc Гм - вк (E(f|f) - Гм) = смк - вк ом = 0.

(См. Рис. 7.22.)

Отметим несколько свойств приведенных равновесных соотношений и коэффициентов бета.

Ожидаемая доходность актива с нулевой бетой (т. е. актива, доходность которого некоррелированна с рыночной доходностью) равна безрисковой ставке, ro. Поскольку такой актив не изменяет риск рыночного портфеля, то он, по сути дела, является безрисковым (несмотря на то, что дисперсия доходности может быть положительной).

Актив с бетой равной единице эквивалентен рыночному портфелю и обладает той же ожидаемой доходностью, что и рыночный портфель.

Определим бету произвольного портфеля следующим образом:

= Cov(fp ^м) = cмp Уаг^м) о^ .

Рис. 7.22. Интерпретация беты актива как наклона линии регрессии

При этом бета портфеля - это взвешенное среднее бет активов, составляющих портфель:

1 1 1 1 1 1 вр = - Cov(fp, Гм) = - Cov(? afcffc, Гм) = - ? ®fcсмк = ? ®fcвк.

'м стм fc=i стм fc=i fc=i

Заметим, что для любого портфеля, лежащего на эффективном луче стр = (1 - ао)стм и

смр = Cov(rp, Гм) = (1 - ао.

Следовательно, у такого портфеля бета равна

смр CTP

вР = -^ = .

стм стм

В частности, бета рыночного портфеля равна единице.

Для эффективного портфеля так же, как для активов, входящих в оптимальный портфель, выполнено

fp - Го = вр (пм - Го) = Го + - (гм - Го).

СТм

Это уравнение эффективного луча, которое мы вывели выше.

СТд

<< | >>
Источник: Бусыгин, Желободько, Цыплаков. Микроэкономика - Третий уровень 2005 702 с.. 2005

Еще по теме 7.6.1 Задачи:

  1. 1. ЦЕЛЬ И ЗАДАЧИ ДИСЦИПЛИНЫ
  2. 1. ЦЕЛИ И ЗАДАЧИ КУРСОВОЙ РАБОТЫ
  3. 1.2. Сущность, цели и задачи PR
  4. Бизнес-план позволяет решать целый ряд задач, но основными из них являются следующие:
  5. Тема 2 СУЩНОСТЬ, ЗАДАЧИ И ФУНКЦИИ БАНКОВСКОГО МЕНЕДЖМЕНТА
  6. БИЗНЕС-ПЛАН ФИРМЫ ОБЕСПЕЧИВАЕТ РЕШЕНИЕ СЛЕДУЮЩИХ ОСНОВНЫХ ЗАДАЧ:
  7. 1.2 СОВРЕМЕННЫЕ ПОДХОДЫ К РЕШЕНИЮ ЗАДАЧ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ПРОМЫШЛЕННЫМ ПРЕДПРИЯТИЕМ
  8. ГЛАВА 2. Модели и алгоритмы решения задачи распределения производственных ресурсов промышленного предприятия
  9. 2.1 Постановка и математическая модель задачи
  10. 2.2 ГРАФИЧЕСКАЯ ИЛЛЮСТРАЦИЯ ПРОЦЕССА НАХОЖДЕНИЯ РЕШЕНИЯ ПОСТАВЛЕННОЙ ЗАДАЧИ
  11. 2.3 АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ РАСПРЕДЕЛЕНИЯ РЕСУРСОВ
  12. 2.4.1 Задачи
  13. 2.5.1 Задачи
  14. 2.B.3 Задачи
  15. 3.1.2 Задача потребителя, маршаллианский спрос, непрямая функция полезности